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We propose a model for phase transitions involving hydrogen bonding in lipid bilayers. The model
is an interacting model with five states on each site of a two-dimensional square lattice. This model
describes both the hydrogen bonding network proposed for phosphatidylethanolamine lipids by x-ray
spectroscopy and its disruption by lipid-water interactions. The phase transitions predicted by the
model are identified by use of numerical simulation in conjunction with recent extrapolation and
finite-size-scaling methods. The percolation properties were also investigated, and it is found that
the percolation exponents cannot be described by random percolation theory. The relationship of
the results to experiment and extensions of the model is discussed.

PACS number(s): 87.22.Bt, 64.60.Cn, 64.60.Ak

I. INTRODUCTION

Both anhydrous and fully hydrated phospholipid bi-
layers have been the subject of much experimental and
theoretical work due to their interesting phase behavior.
In addition, hydrated bilayers are considered to be mod-
els for biological membranes. Generally phospholipids
are surfactantlike molecules with two hydrophobic fatty
acid chains and a hydrophilic polar head. The nature of
the polar head is therefore important for the hydration
properties of the bilayer. Two types of polar head, phos-
phorylcholine (PC) and phosphorylethanolamine (PE),
together account for the polar heads of the majority
of phospholipids in most cell membranes [1]. Lamellar
phases composed of PE hydrate less strongly than the
corresponding lamellar phases of PC [2], and show a much
greater tendency to form dehydrated and/or nonlamellar
phases than do PC lipids of comparable acyl chain com-
position.

Boggs [3] and Hauser et al. [4] have suggested that
the differences in the hydration properties of PE and PC
lipids are largely attributable to differences in the abil-
ities of these two lipids to participate in intermolecular
lipid-lipid hydrogen bonding. The hydrogen bonding of
dilauroylphosphatidylethanolamine (DLPC) has been in-
vestigated by using x-ray crystallography by Hitchcock et
al. [5], who found that in anhydrous crystals each PE po-
lar head was connected by N-H---O hydrogen bonds to
four neighboring polar heads. Here the the bonds are
between the oxygens (acceptors) of the phosphate group
and the hydrogens (donors) of the amino group. Since
the trimethylammonio group of PC lipids cannot form
hydrogen bonds, the PC headgroup can serve as an ac-
ceptor but not as a donor of hydrogen bonds.

Fully hydrated one-component PC bilayers undergo a
phase transition, known as the main phase transition, in
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which the bilayer passes from a gel (solid) phase to a
liquid—crystalline (fluid) phase. Both these phases are
stable hydrated phases. For pure PE lipid bilayers, the
situation is considerably different. Several studies [6-11]
have shown that aqueous dispersions of dimyristoyl phos-
phatidylethanolamine (DMPE) can form at least three
distinct types of lamellar phase: stable, virtually de-
hydrated “crystalline” (AS) phases in which the acyl
chains are rigid and tightly packed and the polar heads
are presumably hydrogen bonded to one another; a hy-
drated solid (HS) metastable phase, in which the chains
are somewhat less tightly ordered; and a hydrated fluid
(HF) stable phase, in which the chains are flexible. The
crystalline nature of the AS phase has been confirmed
by the x-ray crystallographic studies of Seddon and co-
workers [6, 7], who show that this phase has basically
the same structure as the anhydrous crystal. On heat-
ing, the AS phase makes a first-order phase transition to
the HF phase. Several effects occur at this transition.
Firstly, the solid melts and the acyl chains become flexi-
ble (chain melting). A second likely effect in the HS and
HF phases is that the interlipid hydrogen bond network
existing in the AS phase could be disrupted by competi-
tion with lipid-water interactions. The precise degree to
which interlipid hydrogen bonding interactions are dis-
rupted upon conversion of the AS phase to the HS or HF
phase has yet to be established experimentally, although
it appears that lipid-water hydrogen bonding is extensive
in the HF phase in particular. In contrast to the AS to
HF transition, the transition of the metastable, but long-
lived HS phase to the HF phase exhibits a considerably
lower latent heat. One implication is that the hydrogen
bonding makes almost no contribution to the latent heat
of the transition between the hydrated phases.

There have been a number of models relevant to hy-
drogen bonding in lipid bilayers. The earlier models were
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phenomenological models for the effect of hydrogen bond-
ing on the transition temperature of the main phase tran-
sition proposed by Nagle [12] and Eibl and Wooley [13].
A more recent microscopic model, which is the closest one
to the model we propose in this paper, is that studied
in considerable detail by MacDonald, Pink, and Quinn
[14, 15]. Their model applies to those hydrated ceri-
brosides in which there is a single-donor—single-acceptor
complex on the amide group giving rise to a “striped”
ground state composed of one-dimensional (1D) hydro-
gen bonding networks. This model included both hy-
drogen bonding effects and chain melting at the main
phase transition. This model is similar to a Potts lattice
gas model of krypton adsorbed on graphite proposed by
Berker, Ostlund, and Putnam [16] and a site-bond per-
colation model, with temperature-dependent bond prob-
ability proposed by Coniglio, Stanley, and Klein [17] to
study the sol-gel transition. Both models include a site
degree of freedom which cannot bond with neighboring
sites, and other degrees of freedom which are able to,
but need not, bond with neighboring sites. Also, in both
models the bonds are not correlated with the relative po-
sition of the sites. This is a major difference between the
latter two models, and both the first model and the one
we propose in Sec. II.

In the present work we concentrate on the hydrogen
bonding aspects of the main phase transition of pure PE
bilayers and study the related percolation properties in
detail. A detailed analysis of chain melting will be the
subject of a later study. In Sec. II, we present an inter-
acting model with five states on each site of a 2D square
lattice. This model mimics both the hydrogen bonding
network proposed for PE lipids by Hitchcock et al. [5,4]
and its disruption by lipid—water interactions. Four of the
states describe the bonding aspects of the double-donor-
double-acceptor complex of PE polar heads leading to
a 2D network of hydrogen bonds and the fifth state is
an unbonding state which is related to hydration effects.
The parameters of the model are the bonding energy, E,
and the degeneracy, D,,, of the unbonding state. In our
work, a high value of D, implies that the degeneracy
of the fifth state includes the degeneracy of melted lipid
chain conformations typical of the HF phase. We study
the phase behavior of the model by computer simulation
and use the recently proposed finite-size-scaling method
of Lee and Kosterlitz [18] to examine the nature of the
related phase transitions. Both the methods and the sim-
ulation results are described in Sec. III. We find a per-
colation transition at a temperature Tj, which decreases
with increasing degeneracy. The transition is a contin-
uous percolation transition without any thermal phase
transition below a critical value of D,, and above this
value there is a first-order thermal transition accompa-
nied by a first-order percolation transition. The low tem-
perature phase which is almost fully bonded represents
the AS phase, and the high temperature phase models
a hydrated HS or HF phase. A numerical study of the
scaling behavior of the percolation transition is presented
in Sec. IV. In this section, it is shown that the percola-
tion exponents of our model are more closely related to
bootstrap percolation than to regular percolation theory.

Section V contains a discussion of the results of Secs. IV
and V in the context of experiment and concludes the
article.

II. MICROSCOPIC MODEL
FOR HYDROGEN BONDING

In this section we give a detailed description of the mi-
croscopic model used to describe the hydrogen bonding
network of polar heads discussed in Sec. I. The network is
set up on a two-dimensional square lattice with a lattice
spacing set to unity. Each lattice site represents a PE
polar head which can have a maximum of four possible
hydrogen bonds (HB’s) with the polar heads of neighbor-
ing molecules. Each polar head has two HB donors and
two HB acceptors. The structure of the polar head is
such that the two donors are perpendicular to each other
and the donors are antiparallel to the acceptors. This is
the case for PE polar heads in DLPC [5]. Each lattice site
represents a PE polar head and can be in one of five possi-
ble states. Four of these states are called bonding states,
and we assume that for the bonding states the donors
are oriented along the links between lattice sites. Since
the two donors are perpendicular we associate with each
bonding state a horizontal unit vector s@ corresponding
to the direction of one of the donors and a vertical unit
vector S corresponding to the direction of the other
donor at the same site. Thus, the four bonding states are
given by (S® = %, S® = y), (8@ =1, sW = _y),
(S(E) = —%, SW = ), and (s(m) = —%, SW = -9).
This allows three possible arrangements on each lattice
bond connected by bonding states: two donors, two ac-
ceptors, or one donor and one acceptor. In our model,
a hydrogen bond of bonding energy, Ej, is formed when
an acceptor and a donor are present on the same lattice
bond. The two other arrangements have no energy as-
sociated with them. The system lowers its energy by an
amount Ey, when an HB is formed and the same value of
the energy is required to break an HB. Note that on each
site it is possible for one of the HB donor vectors, s
or S, to bond without the other donor bonding. The
same is true for the acceptors. Thus, from zero to four
HB’s can be formed between a site and its four nearest
neighbors. The polar head is also allowed to be in a fifth
state, called the “unbonding” state [14, 19]. This state
has a degeneracy D,,, which partially represents all pos-
sible orientations of the polar head, both in-plane and
out-of-plane, for which a polar head cannot form hydro-
gen bonds with neighboring polar heads. In this work,
we assume that the degeneracy is principally a measure
of the ability of the polar head to become hydrated by
the surrounding water molecules at low values, but in-
cludes melted chain conformation at higher values of D,,.
The thermally induced competition between the forma-
tion of HB’s and the degeneracy effect of the unbonding
state should therefore result in a hydration-dehydration
transition. For the unbonding state the donor vectors
are assigned the values S = 0 and S® = 0. The five
states at each lattice site of the model and some of the
various bonding possibilities are shown in Fig. 1.
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FIG. 1. (a) The five possible states at each lattice site of
our model. The solid vectors point in the direction of the
HB donors and are equal to S and S®. The dashed vec-
tors represent the direction of the HB acceptors. The fifth
state is schematically represented as a circle with a dot in-
side, and is shown in the second row. (b) Two of the bonding
possibilities for nearest-neighbor sites. (¢) Two examples of
nearest-neighbor sites which do not bond.

The Hamiltonian for the five-state model described
above can be written as follows:

H=—Epy [f(SE -8 )+ F(S¥ -, (1)

k3

where f(1) = 1, f(z) = 0 for z # 1, and Sﬁ? and Sg’)
represent the donor vectors of the ith polar head located
at the position r;. Finally, Mouritsen [20] has shown how
degeneracies such as D,, should be treated in Metropolis
Monte Carlo simulations. We wish to point out that de-
generacies for states representing an average over melted
chain conformations can be quite high (see [20]).

III. CALCULATIONAL TECHNIQUES
AND PHASE DIAGRAM

We begin this section with a short description of the
finite-size-scaling methods used to identify the nature of
phase transitions in the microscopic model given by Eq.
(1). This will be followed by the numerical simulation
results obtained from finite-size scaling for this model.

First-order transitions are usually characterized by dis-
continuities in the first derivatives of the free energy.
This results in a §-function singularity in the specific heat
C(T) at the transition in the thermodynamics limit. In a
finite system, however, the transition region is broadened
and the peak in C(T') is finite and its height increases
with increasing linear lattice size, L. Furthermore, the
location of the intensity of the maximum varies in a size-
dependent manner. The maxima grow as L? in d dimen-
sions and the é-function limit is obtained because the

width decreases as L—¢.
for a finite lattice is

CP* =a +bL?, 2)

where a and b are the size-independent parameters deter-
mined from the model [21]. A similar scaling form exists
for the maximum value of other response functions such
as the susceptibility in Ising systems. C(T) is calculated
from the following expression:

C(T)/kp = B*((E?) — (E)*)/L?, (3)
where 8 = —. The phase behavior of the microscopic
model of Eq. (1) is examined by the standard Metropolis
Monte Carlo method with nonconserved dynamics [20] in
conjunction with the new techniques of Ferrenberg and
Swendsen [22] and Lee and Kosterlitz [18, 23] to examine
the phase behavior of the model. Each Monte Carlo step
consists of randomly choosing a site and attempting to
change the state of that site to one of the four other
states with a probability given by the Metropolis rule. In
computing the difference in energy between the old and a
new state we use the Hamiltonian of Eq. (1). The Monte
Carlo techniques used here consist of three parts. First,
Monte Carlo simulations are performed for the evaluation
of the specific heat, C(T) as a function of temperature T',
using Eq. (3). The results of these simulations are used
to determine the peaks in C(T") as accurately as possible.

Next, long time simulations are performed at the po-
sition, Tp, of the peak of C(T') for several values of the
system size, L. Here L? is the volume of the system.
The extrapolation method of Ferrenberg and Swendsen
is then used to calculate the probability distribution,
P(E,Ty, L), of the internal energy at the peak. This
method allows one to calculate thermodynamic proper-
ties of a system at temperatures near the temperature at
which the simulation was actually run. In particular, this
allows us to calculate the values of C(T") at neighboring
temperatures. Finite-size scaling can then be performed
on the data. For a first-order phase transition, C(T)
scales according to Eq. (2) whereas it scales as LY for
a continuous transition, o and v being the usual critical
exponents.

The order of the phase transition is then examined by
the method of Lee and Kosterlitz. This method consists
of calculating the free energy as a function of the internal
energy at the transition from the probability distribu-
tion at the specific heat peak. The quantity A(E,T, L)
defined by [23]

The maximum value of C(T)

A(E,T,L) ~ —InP(E,T, L) (4)

differs from the bulk free energy F(E,L) by a
temperature- and L-dependent additive quantity. How-
ever, at fixed T' and L, the shape of A(E,T, L) will be
identical to that of F(F,L) and also AA = A(E) —
A(E") = F(E) — F(E’). A measurement of AA there-
fore gives a direct evaluation of the corresponding AF.
At a first-order transition, F(E, L) has pronounced dou-
ble minima corresponding to two coexisting phases at
E = E; 3 separated by a maximum at E,, corresponding
to a domain wall between the two phases. The maximum
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difference in F(L) is
AF(L) = F(Em,L) — F(E1,L) ~ L%, (5)

and therefore, at a first-order transition, AF(L) increases
monotonically with increasing L. Furthermore, AF(L)
decreases with increasing L in the absence of a transition
leading to a single minimum in the thermodynamic limit.
Finally AF(L) is independent of L at a critical point.
The two model parameters are T* = kgT'/E}, and the
unbonding degeneracy, D,,. The finite-size-scaling meth-
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FIG. 2. Free energy F(E,L) vs E/Ey. D, = (a) 160, (b)

100, and (c) 200.

ods described above were used to obtain a phase dia-
gram in terms of T* and D,,. We therefore examined the
model of Eq. (1) by performing numerical simulations
on L x L square lattices with periodic boundary condi-
tions. The temperature at which the simulations were
performed was chosen as close as possible to the transi-
tion temperature, T,;, and 4 x 10% Monte Carlo steps per
site (MCS) were found to give the required accuracy.
The thermal transition at T} found using the model
of Eq. (1) is accompanied by a percolation transition.
The phase below T, is characterized by an infinite clus-
ter of hydrogen bonds whereas there are only finite HB
clusters (lattice animals) above T;. If this transition is
a first-order phase transition, then T} = T;7(L) will be
a function of system size and it is defined as the tem-
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FIG. 3. Configurations for D, = 200. The shaded squares

indicate unbonding states. The lines indicate actual HB
bonds. (a) T" = 1.004T,. (b) T™ = 0.996T, .
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FIG. 4. Phase diagram for our model. The solid line in-
dicates a first-order transition. The dashed line indicates no
thermal phase transition, but the existence of a percolation
transition.

perature at which F(E1, L) = F(E,, L), where F(Ey, L)
and F(FEs, L) are the free energies of the percolating and
nonpercolating phases, respectively. These free energies
were calculated for various values of the degeneracy, D,
from 2 to 800 for L=12, 16, and 20 in order to examine
the phase behavior of the system and to find a critical
point. It was found that the system did not exhibit a
phase transition for values of D, below about 160. At
this value of D, the system is at or extremely close to
a critical point. Figure 2(a) shows that, in this case, the
free energy as a function of E/E} exhibits two minima
with a maximum between them, but that the height of
the maximum, AF(L), is independent of system size to
within calculational error. Figure 2(b) gives F(E, L) as
a function of system size and E/E, when D, = 100.
This figure shows that AF (L) decreases with increasing
L in this case implying the absence of a phase transi-
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FIG. 5. Scaling function for the specific heat for L =
12,16,20, and 24, and D, = 200. T,, is the location of the
specific heat maximum. The peak height of the scaling func-
tion decreases with increasing L.
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FIG. 6. Latent heat in the regime of first-order phase tran-
sitions as a function of D,. The lines are guides to the eye.
The point at D, = 160 is an estimate of the location of the
critical point.

tion in the thermodynamic limit. The temperature T
then represents a continuous percolation transition. In
contrast, Fig. 2(c) shows that, for D, = 200, AF(L)
increases with increasing L implying the occurrence of
a first-order phase transition. In this case the system
makes an abrupt transition from the percolating case to
a situation where there are only a few clusters of hydro-
gen bonded polar heads. We also calculated the specific
heat at T, for different system sizes when D, = 200 and
showed that it increased linearly with increasing L x L.
This confirms that the transition is first order [see Eq.
(2)]. Bonding configurations just below and just above
T, are shown in Fig. 3. The phase diagram for the model
is given in Fig. 4, which shows that T}, decreases with in-
creasing D, . Figure 5 shows that the specific heat scales
reasonably as a function of system size, L, for D, = 200
with a slight decrease in peak height as L increases. The
area under the curve in Fig. 5 gives the latent heat of
transition, AH, which is shown in Fig. 6 for several val-
ues of D, in the first-order transition regime. The same
values for AH were found by calculating the difference
in free energy between the minima at the respective first-
order phase transition (see Fig. 2). Figure 6 shows that
the values found for AH are of the order of the bonding
energy, Ep.

IV. PERCOLATION EFFECTS
AT LOW DEGENERACIES

We showed in Sec. III that for D, less than approx-
imately 160 there is no thermal phase transition in our
model. However, there is a percolation transition which
occurs when an infinite cluster of sites connected by hy-
drogen bonds spans the lattice at a definite transition
temperature 7. We now wish to determine the critical
properties of this transition.

Our system is a natural example of correlated site-
bond percolation. A site is occupied if it is in any one
of the four bondable states. Two neighboring occupied
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sites are connected by a bond only if they have a hydro-
gen bond according to our model. Most other examples
of site-bond percolation in thermally driven systems im-
pose bonds on the system. For example [19], the critical
point of the Ising model becomes a percolation transi-
tion if one assigns bonds between spins pointing in the
same direction with a probability 1 — exp (—2J3), where
J is the Ising nearest-neighbor coupling. The critical per-
colation exponents in this case are given by their Ising
model equivalents. Another example is a model of gela-
tion in microemulsions devised by Stauffer and Eicke [24]
which uses a Widom model to investigate three tran-
sitions: phase separation when the the magnetization
becomes nonzero, electrical percolation when an infinite
cluster of up spins is formed, and gelation when an in-
finite cluster of up spins connected randomly by bonds
with probability p; is formed. Again the bonds are im-
posed and are not part of the Hamiltonian. When bonds
are imposed at random with a particular probability one
expects the critical exponents to be the same as those
for ordinary percolation. In two dimensions these are
given by 8 = 5/36 ~ 0.14, v = 43/18 ~ 2.39, and
v = 4/3 =~ 1.33 [25]. The exponents are defined by the
following power laws near the percolation transition, p.:

Py ~ (p—pc)?, (6)
X=) ns’~(@—p)", (7)
€ ~ (p _pC)_U, (8)

where P, is the probability of an occupied site belong-
ing to the infinite spanning cluster, n, is the number of
clusters per site with s sites, and £ is the connectedness
length. The sum in Eq. (7) does not include the largest
cluster.

To obtain values for the exponents we apply the stan-
dard finite-size-scaling relations for a system of size L
[25]:

Pspan(La t) = f(tLl/V)a (9)
P (L, t) = L=A/Vg(¢L}/7), (10)
x(L,t) = LYY h(tLY"), (11)

where t = (T — T) /T, Pspan equals the probability of
the system containing a spanning cluster in the vertical
direction, and the exponents and scaling functions, f, g,
and h depend on the degeneracy, D,,. The above scaling
forms assume that 7™ plays the same role as the percola-
tion probability p in random percolation models. We use
the standard cluster labeling techniques to enumerate the
clusters and calculate ), P, and Pspan, The Ferrenberg-
Swendsen method of calculating properties at tempera-
tures other than the one being simulated also works very
well for cluster properties. Using Eq. (9), the tempera-
ture T is determined by the crossing of the curves for
Pypan versus temperature for different sizes. Then the
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exponents 3/v and «/v are obtained from log-log plots
using Eqs. (10) and (11), respectively. The exponent v
is obtained from

T;(0.8) — T;(0.2) ~ L™Y¥, (12)

where here T () is the temperature at which a fraction
z of the configurations span vertically. Scaling plots for
D, =100 and D, =5 are shown in Figs. 7 and 8.

Our results for D,, = 100 are v = 1.28 + 0.03, v =
2.87 £ 0.11, and B = 0.28 & 0.04. The error estimates
are based on how the slopes in the log-log plots vary as
we vary the estimate of T,;. The exponents do not follow
the hyperscaling relation dv = v + 23. The value for v
is reasonably close to that of ordinary random percola-
tion (RP), but the other two exponents are significantly
higher. This is similar to the situation in bootstrap per-
colation (BP) [26,27]. In m state BP configurations are
generated with site probability p, and then occupied sites
with fewer than m neighbors are recursively eliminated.
This culling tends to increase the value of the percola-
tion ‘threshold for m > 1. The case m = 0 is ordinary
percolation. One expects for m = 1 to have the same
scaling behavior as RP. For m = 2 on a square lattice
simulations show that v is the same as in RP [28] but
[ is higher [26]. In addition, one can show that 3 is at
least as large as in RP [29]. Although our results are not
sufficiently precise to establish any quantitative connec-
tion to BP, they do show the same qualitative behavior.
Also, for m > 2 on a square lattice BP has a first-order
transition at p. = 1 just as our model has a first-order
transition for large enough degeneracy.

We expect that as D, — 0 our results should converge
to the random percolation scaling behavior. For D, = 0
it is clear that the transition must be at infinite tem-
perature since the site probability is unity and the bond
probability at finite temperatures is always less than or
equal to 0.5, which is the percolation transition for ran-
dom bond percolation on a square lattice. Thus, we ex-
pect the D, = 0 version of our model to be equivalent to
random bond percolation, and we must obtain the ordi-
nary percolation exponents. For D, = 5 we found that
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FIG. 7. Pispan vs T™ for L = 20,40, and 60. The transition
region narrows as L increases. (a) D, = 100; (b) D, = 5.
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v = 1.39£0.03 and v = 2.72 £ 0.09. We are not able
to estimate a value for 3 since the log-log plot of P (L)
shows too much curvature. Note that we include in our
scaling plots a point for L = 8. For D, = 100 we can-
not include such a point because at this size the system
behaves as if there is a first-order transition.

We can understand these results quite readily. The
effect of the interactions in our model is to fill in the
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FIG. 8. Scaling plots (a) InAT* = In [T,;(0.8) — T;(0.2)]
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clusters that would be obtained from random percola-
tion. This effect can easily be seen by looking at pictures
of configurations as shown in Fig. 9. We see that above
the transition there are very few clusters, but very close
to the transition there is one large cluster containing al-
most all the sites. This filling in will not affect the linear
extent of the clusters and thus v will not change. How-
ever, since both P,, and x depend on the mass of the
clusters, we would expect the exponents describing them
to increase, as indeed we have found. Notice also the dif-
ference between the configurations at D, = 100 in Fig.
9 and those at D, = 200 in Fig. 3. Even though the
configurations we show at D, = 200 is for a smaller |¢|,
the change between just above and just below 7} is much
greater than those shown for D, = 100. This is what we
would expect for a first-order transition.
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FIG.9. Configurations for D, = 100. The shaded squares
indicate unbonding states. The lines indicate actual HB
bonds. (a) T* = 1.01T,. (b) T* = 0.99T}.
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The presence of a percolation transition without a ther-
mal transition resembles the idea put forward by Adler
and Stauffer [30] for a liquid-gas transition line above the
critical temperature in the Ising model. They find evi-
dence for a sharp transition line where there is a change
in the convergence behavior of the Taylor-series expan-
sion of the magnetization for a system in a large magnetic
field. This transition line corresponds to the percolation
transition based on the Kertesz droplet definition [31].

The lattice structure of our models should not affect
the validity of the above results. In RP the critical ex-
ponents are known to depend only on the spatial dimen-
sionality not on the lattice structure. Indeed all static
exponents are the same even for continuum percolation
models [32]. For BP on a triangular lattice, 8 is similar
for m = 2 to the square lattice value [26] and there are
first-order transitions for m > 3. Thus, we do not expect
the scaling behavior of our model to vary much if we
change the lattice structure. If we consider our model on
a triangular lattice with six possible bonding states, each
of which has two HB donors separated by 60°, then there
is a maximum of four possible bonds with the six nearest
neighbors. Thus, only 2/3 = 0.67 of all possible bonds
can be occupied, compared to the square lattice where all
bonds can be occupied. However, the bond percolation
threshold for the triangular lattice is at about 0.347 [25],
which is about 0.69 of the threshold for the square lattice.
Since this is roughly the same fraction as the fraction of
possible bonds, we would expect that T, as a function of
D, would be similar in the square and triangular lattices.

V. CONCLUSION

In this work we have proposed and analyzed a model
for 2D hydrogen bonding networks in lipid bilayers. Our
purpose was to understand the phase behavior and perco-
lation properties of these systems in the absence of other
more complex effects. We have shown by computer sim-
ulation that the model has a percolation transition in the
absence of a thermal transition at low values of D,, and a
first-order phase transition accompanying the percolation
transition for D, > 160. We have investigated in detail
the nature of the percolation transition for 0 < D,, < 160,
where there is no thermal transition, and found that the
scaling behavior cannot be described by random perco-
lation theory, but is similar to that found in bootstrap
percolation. It would be interesting to find a real lipid
system which exhibits such a percolation transition with-
out a thermal transition. Such a transition could be in-
ferred from spectroscopic measurements of the number of
hydrogen bonds. It would clearly be of more interest to
measure the connectivity of the hydrogen bonding net-
work, but this is difficult to achieve with present experi-
mental techniques. However, Lamanna and Cannistraro
[33] recently showed that data from proton nuclear mag-

netic resonance experiments on normal and supercooled .

water could be interpreted in terms of the cooperativ-
ity of the hydrogen bonding network. It would therefore
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be of interest to see if this experimental method could
also be used for the examination of hydrogen bonding
between polar heads in lipid bilayers.

The results reported here were obtained by using the
the extrapolation method of Ferrenberg and Swendsen
[22]. The nature of the phase transitions was firmly es-
tablished by means of the finite-size-scaling method of
Lee and Kosterlitz [18, 23].

From the point of view of hydrogen bonding in lipid
bilayers, we have only described part of the behavior of
the system at the main phase transition. For first-order
phase transitions, we identify the low temperature fully
bonded phase with the dehydrated or AS phase, which
is therefore characterized by mostly bonding energy and
small overall degeneracy. By contrast, the high tempera-
ture phase which is composed of mostly unbonding states
and therefore represents a hydrated HS or HF phase, is
characterized by a higher degeneracy and a small energy
difference between lipid-lipid and lipid-water hydrogen
bonds. What is missing in the model is a detailed analysis
of the chain melting phase transition which accompanies
change in the hydrogen bonding network. We intend to
generalize the model to include these effects by using the
Pink multistate lattice model [34] to describe the chain
degrees of freedom for two chains at each lattice site.
Nonhydrogen bonding interactions between polar heads
and differences in free energy between the AS and HS
phases will be introduced phenomenologically via addi-
tional energy and local entropy terms. Computer sim-
ulations of the same type as used in this paper will be
applied to the full model so as to determine the phase
behavior. Dynamics and metastability will also be ex-
amined in the spirit of the work done on quenching of
Ising models.

‘We also plan to extend the model of Sec. II in order to
apply it to the following problems:

(i) Binary mixtures of PE lipids and PC lipids which
have only two acceptors and no donors.

(ii) Ternary mixtures of PE lipids, PC lipids, and
diglycerides (DG) which do not hydrogen bond. This
system should act in an analogous manner to a mixture
of immiscible fluids containing surfactants with the PC
lipids taking the part of surfactants.

(iii) Extension of the model of Sec. II to three dimen-
sions. This should be a “toy” model for hydrogen bond-
ing in water.
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